If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x+5.25=0
a = 3; b = 12; c = +5.25;
Δ = b2-4ac
Δ = 122-4·3·5.25
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-9}{2*3}=\frac{-21}{6} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+9}{2*3}=\frac{-3}{6} =-1/2 $
| 7p÷9=21 | | 9x-(3-2)x+16=88 | | x*5-4=x*3+8 | | -10(x+5)=-85 | | 2^x+2^x-3=18 | | -(x-6)=6 | | -2x^2+14x+38=0 | | 2x+3/6-x-1/6=x+2/3+2 | | 6x-7=15x-52 | | 81=9×y | | 3a+3=2a+12 | | X+4x=12.5 | | 9(w+6)=-5w+12 | | -6(2t+8)=-120 | | 6x+2=-7(x+9) | | 3^(1-a)=2 | | 3^1-a=2 | | 6x+2=7(x+9) | | -3(w+8)=-9w-12 | | 3a=2a+12 | | -5u+38=2(u-9) | | 6x+3-2x-5=5x-2-4x+9 | | 4x=14-x | | 2x-4=4x+2/3 | | 8(u-5)-5u=-34 | | -34=3x+2(x+3) | | 4/5(x+5/6)-2/3(x-1/4)=1x1/6 | | -23=2(w-8)+5w | | Y=1000+50x5 | | 10=3a+4 | | 2a+10=4a-90 | | 3^3x=19683 |